Characterization of Semantic Segmentation Models on Mobile Platforms for Self-Navigation in Disaster-Struck Zones

02/03/2022
by   Ryan Zelek, et al.
0

The role of unmanned vehicles for searching and localizing the victims in disaster impacted areas such as earthquake-struck zones is getting more important. Self-navigation on an earthquake zone has a unique challenge of detecting irregularly shaped obstacles such as road cracks, debris on the streets, and water puddles. In this paper, we characterize a number of state-of-the-art FCN models on mobile embedded platforms for self-navigation at these sites containing extremely irregular obstacles. We evaluate the models in terms of accuracy, performance, and energy efficiency. We present a few optimizations for our designed vision system. Lastly, we discuss the trade-offs of these models for a couple of mobile platforms that can each perform self-navigation. To enable vehicles to safely navigate earthquake-struck zones, we compiled a new annotated image database of various earthquake impacted regions that is different than traditional road damage databases. We train our database with a number of state-of-the-art semantic segmentation models in order to identify obstacles unique to earthquake-struck zones. Based on the statistics and tradeoffs, an optimal CNN model is selected for the mobile vehicular platforms, which we apply to both low-power and extremely low-power configurations of our design. To our best knowledge, this is the first study that identifies unique challenges and discusses the accuracy, performance, and energy impact of edge-based self-navigation mobile vehicles for earthquake-struck zones. Our proposed database and trained models are publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro