Channel Optimized Visual Imagery based Robotic Arm Control under the Online Environment
An electroencephalogram is an effective approach that provides a bidirectional pathway between the user and computer in a non-invasive way. In this study, we adopted the visual imagery data for controlling the BCI-based robotic arm. Visual imagery increases the power of the alpha frequency range of the visual cortex over time as the user performs the task. We proposed a deep learning architecture to decode the visual imagery data using only two channels and also we investigated the combination of two EEG channels that has significant classification performance. When using the proposed method, the highest classification performance using two channels in the offline experiment was 0.661. Also, the highest success rate in the online experiment using two channels (AF3-Oz) was 0.78. Our results provide the possibility of controlling the BCI-based robotic arm using visual imagery data.
READ FULL TEXT