Channel Estimation for Extremely Large-Scale MIMO: Far-Field or Near-Field?
Extremely large-scale multiple-input-multiple-output (XL-MIMO) with hybrid precoding is a promising technique to meet the high data rate requirements for future 6G communications. To realize efficient hybrid precoding, it is essential to obtain accurate channel state information. Existing channel estimation algorithms with low pilot overhead heavily rely on the channel sparsity in the angle domain, which is achieved by the classical far-field planar wavefront assumption. However, due to the non-negligible near-field spherical wavefront property in XL-MIMO systems, this channel sparsity in the angle domain is not available anymore, and thus existing far-field channel estimation schemes will suffer from severe performance loss. To address this problem, in this paper we study the near-field channel estimation by exploiting the polar-domain sparse representation of the near-field XL-MIMO channel. Specifically, unlike the classical angle-domain representation that only considers the angle information of the channel, we propose a new polar-domain representation, which simultaneously accounts for both the angle and distance information. In this way, the near-field channel also exhibits sparsity in the polar domain. By exploiting the channel sparsity in the polar domain, we propose the on-grid and off-grid near-field channel estimation schemes for XL-MIMO. Firstly, an on-grid polar-domain simultaneous orthogonal matching pursuit (P-SOMP) algorithm is proposed to efficiently estimate the near-field channel. Furthermore, to solve the resolution limitation of the on-grid P-SOMP algorithm, an off-grid polar-domain simultaneous iterative gridless weighted (P-SIGW) algorithm is proposed to improve the estimation accuracy, where the parameters of the near-field channel are directly estimated. Finally, numerical results are provided to verify the effectiveness of the proposed schemes.
READ FULL TEXT