Change-point detection in dynamic networks via graphon estimation

08/05/2019 ∙ by Zifeng Zhao, et al. ∙ 0

We propose a general approach for change-point detection in dynamic networks. The proposed method is model-free and covers a wide range of dynamic networks. The key idea behind our approach is to effectively utilize the network structure in designing change-point detection algorithms. This is done via an initial step of graphon estimation, where we propose a modified neighborhood smoothing (MNBS) algorithm for estimating the link probability matrices of a dynamic network. Based on the initial graphon estimation, we then develop a screening and thresholding algorithm for multiple change-point detection in dynamic networks. The convergence rate and consistency for the change-point detection procedure are derived as well as those for MNBS. When the number of nodes is large (e.g., exceeds the number of temporal points), our approach yields a faster convergence rate in detecting change-points comparing with an algorithm that simply employs averaged information of the dynamic network across time. Numerical experiments demonstrate robust performance of the proposed algorithm for change-point detection under various types of dynamic networks, and superior performance over existing methods is observed. A real data example is provided to illustrate the effectiveness and practical impact of the procedure.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.