Change-point detection for multivariate and non-Euclidean data with local dependency

03/05/2019
by   Hao Chen, et al.
0

In a sequence of multivariate observations or non-Euclidean data objects, such as networks, local dependence is common and could lead to false change-point discoveries. We propose a new way of permutation -- circular block permutation with a random starting point -- to address this problem. This permutation scheme is studied on a non-parametric change-point detection framework based on a similarity graph constructed on the observations, leading to a general framework for change-point detection for data with local dependency. Simulation studies show that this new framework retains the same level of power when there is no local dependency, while it controls type I error correctly for sequences with and without local dependency. We also derive an analytic p-value approximation under this new framework. The approximation works well for sequences with length in hundreds and above, making this approach fast-applicable for long data sequences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro