Change Diffusion: Change Detection Map Generation Based on Difference-Feature Guided DDPM

06/06/2023
by   Yihan Wen, et al.
0

Deep learning (DL) approaches based on CNN-purely or Transformer networks have demonstrated promising results in bitemporal change detection (CD). However, their performance is limited by insufficient contextual information aggregation, as they struggle to fully capture the implicit contextual dependency relationships among feature maps at different levels. Additionally, researchers have utilized pre-trained denoising diffusion probabilistic models (DDPMs) for training lightweight CD classifiers. Nevertheless, training a DDPM to generate intricately detailed, multi-channel remote sensing images requires months of training time and a substantial volume of unlabeled remote sensing datasets, making it significantly more complex than generating a single-channel change map. To overcome these challenges, we propose a novel end-to-end DDPM-based model architecture called change-aware diffusion model (CADM), which can be trained using a limited annotated dataset quickly. Furthermore, we introduce dynamic difference conditional encoding to enhance step-wise regional attention in DDPM for bitemporal images in CD datasets. This method establishes state-adaptive conditions for each sampling step, emphasizing two main innovative points of our model: 1) its end-to-end nature and 2) difference conditional encoding. We evaluate CADM on four remote sensing CD tasks with different ground scenarios, including CDD, WHU, Levier, and GVLM. Experimental results demonstrate that CADM significantly outperforms state-of-the-art methods, indicating the generalization and effectiveness of the proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset