cFineGAN: Unsupervised multi-conditional fine-grained image generation

12/06/2019
by   Gunjan Aggarwal, et al.
48

We propose an unsupervised multi-conditional image generation pipeline: cFineGAN, that can generate an image conditioned on two input images such that the generated image preserves the texture of one and the shape of the other input. To achieve this goal, we extend upon the recently proposed work of FineGAN <cit.> and make use of standard as well as shape-biased pre-trained ImageNet models. We demonstrate both qualitatively as well as quantitatively the benefit of using the shape-biased network. We present our image generation result across three benchmark datasets- CUB-200-2011, Stanford Dogs and UT Zappos50k.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset