Certified Randomness from Bell's Theorem and Remote State Preparation Dimension Witness

by   Xing Chen, et al.

Randomness can be device-independently certified from a set of experimental data by Bell's theorem without placing assumptions about the experimental devices. The certification procedure in previous studies underestimated the generated randomness, due to a non-optimal lower bound of the entropy. We solve this by developing an analytic upper bound for the joint outcome probability p(ab|xy), and show that the lower the Bell inequality violation value is, the more advantageous the use of the joint outcome probability becomes. In the same experimental data, when a few general assumptions are introduced to characterize the experimental setups, substantially more semi-device-independent randomness can be certified by a witness we call remote state preparation dimension witness without using Bell's theorem. This is one important step towards practical use.



There are no comments yet.


page 1

page 2

page 3

page 4


A Note on John Simplex with Positive Dilation

We prove a Johns theorem for simplices in R^d with positive dilation fac...

Certified Randomness From Steering Using Sequential Measurements

The generation of certifiable randomness is one of the most promising ap...

An Analytic Semi-device-independent Entanglement Quantification for Bipartite Quantum States

We define a property called nondegeneracy for Bell inequalities, which d...

Analytic Semi-device-independent Entanglement Quantification for Bipartite Quantum States

We define a property called nondegeneracy for Bell inequalities, which d...

Reconfigurable Integrated Optical Interferometer Network-Based Physically Unclonable Function

In this article we describe the characteristics of a large integrated li...

Asymptotic Divergences and Strong Dichotomy

The Schnorr-Stimm dichotomy theorem concerns finite-state gamblers that ...

Variable-Length Intrinsic Randomness Allowing Positive Value of the Average Variational Distance

This paper considers the problem of variable-length intrinsic randomness...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.


  • Knuth (1997) D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms (Addison-Wesley Longman Publishing Co., Inc., USA, 1997), ISBN 0201896842.
  • Galton (1890) F. Galton, Nature 42, 13 (1890), URL http://dx.doi.org/10.1038/042013a0.
  • Bennett and Brassard (2014) C. H. Bennett and G. Brassard, Theoretical Computer Science 560, 7 (2014), ISSN 0304-3975, theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84, URL http://www.sciencedirect.com/science/article/pii/S0304397514004241.
  • Herrero-Collantes and Garcia-Escartin (2017) M. Herrero-Collantes and J. C. Garcia-Escartin, Rev. Mod. Phys. 89, 015004 (2017), URL https://link.aps.org/doi/10.1103/RevModPhys.89.015004.
  • Landau and Lifshitz (2013) L. D. Landau and E. M. Lifshitz, Quantum mechanics: non-relativistic theory, vol. 3 (Elsevier, 2013).
  • Acín and Masanes (2016) A. Acín and L. Masanes, Nature 540, 213 (2016), ISSN 1476-4687, URL https://doi.org/10.1038/nature20119.
  • Chen et al. (2019) X. Chen, J. N. Greiner, J. Wrachtrup, and I. Gerhardt, Scientific Reports 9, 18474 (2019), ISSN 2045-2322, URL https://doi.org/10.1038/s41598-019-54594-0.
  • Bell (1964) J. S. Bell, Physics Physique Fizika 1, 195 (1964), URL https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.
  • Clauser et al. (1969a) J. Clauser, M. Horne, A. Shimony, and R. Holt, Phys. Rev. Lett. 23, 880 (1969a).
  • Pironio et al. (2010) S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, et al., Nature 464, 1021 EP (2010), URL https://doi.org/10.1038/nature09008.
  • Arnon-Friedman et al. (2019) R. Arnon-Friedman, R. Renner, and T. Vidick, SIAM Journal on Computing 48, 181 (2019), eprint https://doi.org/10.1137/18M1174726, URL https://doi.org/10.1137/18M1174726.
  • Bierhorst et al. (2018) P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, et al., Nature 556, 223 (2018), ISSN 1476-4687, URL https://doi.org/10.1038/s41586-018-0019-0.
  • Liu et al. (2018) Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W. Zhang, W.-Z. Liu, C. Wu, X. Yuan, et al., Nature 562, 548 (2018), ISSN 1476-4687, URL https://doi.org/10.1038/s41586-018-0559-3.
  • Hensen et al. (2015) B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, et al., Nature 526, 682 (2015), ISSN 1476-4687, URL https://doi.org/10.1038/nature15759.
  • Giustina et al. (2015) M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, et al., Phys. Rev. Lett. 115, 250401 (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.115.250401.
  • Shalm et al. (2015) L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, et al., Phys. Rev. Lett. 115, 250402 (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.115.250402.
  • Rosenfeld et al. (2017) W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, Phys. Rev. Lett. 119, 010402 (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.119.010402.
  • (18) For the semi-device-independent protocols mentioned in this letter, the assumptions about the experimental devices should be general, which means they are not supposed to characterize the devices in details, and they do not belong to source-independent or measurement-device-independent protocols.
  • Kochen and Specker (1967) S. Kochen and E. P. Specker, Journal of Mathematics and Mechanics 17, 59 (1967), ISSN 00959057, 19435274, URL http://www.jstor.org/stable/24902153.
  • Bowles et al. (2014) J. Bowles, M. T. Quintino, and N. Brunner, Phys. Rev. Lett. 112, 140407 (2014), URL https://link.aps.org/doi/10.1103/PhysRevLett.112.140407.
  • Um et al. (2013) M. Um, X. Zhang, J. Zhang, Y. Wang, Y. Shen, D.-L. Deng, L.-M. Duan, and K. Kim, Scientific Reports 3, 1627 EP (2013), article, URL https://doi.org/10.1038/srep01627.
  • Jerger et al. (2016) M. Jerger, Y. Reshitnyk, M. Oppliger, A. Potocnik, M. Mondal, A. Wallraff, K. Goodenough, S. Wehner, K. Juliusson, N. K. Langford, et al., Nature Communications 7, 12930 (2016), ISSN 2041-1723, URL https://doi.org/10.1038/ncomms12930.
  • Lunghi et al. (2015) T. Lunghi, J. B. Brask, C. C. W. Lim, Q. Lavigne, J. Bowles, A. Martin, H. Zbinden, and N. Brunner, Phys. Rev. Lett. 114, 150501 (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.114.150501.
  • (24) In order to allow for a violation of the CHSH inequality, for certain states and measurement settings combinations, a permutation of the values of and might be necessary,.
  • Clauser et al. (1969b) J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969b), URL https://link.aps.org/doi/10.1103/PhysRevLett.23.880.
  • Żukowski et al. (1993) M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 4287 (1993), URL https://link.aps.org/doi/10.1103/PhysRevLett.71.4287.
  • Pan et al. (1998) J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998), URL https://link.aps.org/doi/10.1103/PhysRevLett.80.3891.
  • Larsson (2014) J.-Å. Larsson, Journal of Physics A: Mathematical and Theoretical 47, 424003 (2014), URL https://doi.org/10.1088%2F1751-8113%2F47%2F42%2F424003.
  • Colbeck (2009) R. Colbeck, PhD dissertation, Univ. Cambridge (2009).
  • Acín et al. (2012) A. Acín, S. Massar, and S. Pironio, Phys. Rev. Lett. 108, 100402 (2012), URL https://link.aps.org/doi/10.1103/PhysRevLett.108.100402.
  • Li et al. (2013) H.-W. Li, P. Mironowicz, M. Pawłowski, Z.-Q. Yin, Y.-C. Wu, S. Wang, W. Chen, H.-G. Hu, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 87, 020302 (2013), URL https://link.aps.org/doi/10.1103/PhysRevA.87.020302.
  • Bancal et al. (2014) J.-D. Bancal, L. Sheridan, and V. Scarani, New Journal of Physics 16, 033011 (2014), URL https://doi.org/10.1088%2F1367-2630%2F16%2F3%2F033011.
  • (33) This maybe caused by (i) the finite amount of events or (ii) simply that Bell inequality is not violated.
  • Brunner et al. (2008) N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008), URL https://link.aps.org/doi/10.1103/PhysRevLett.100.210503.
  • Gallego et al. (2010) R. Gallego, N. Brunner, C. Hadley, and A. Acín, Phys. Rev. Lett. 105, 230501 (2010), URL https://link.aps.org/doi/10.1103/PhysRevLett.105.230501.
  • Li et al. (2011) H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 84, 034301 (2011), URL https://link.aps.org/doi/10.1103/PhysRevA.84.034301.
  • Pawłowski and Brunner (2011) M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302 (2011), URL https://link.aps.org/doi/10.1103/PhysRevA.84.010302.
  • Bennett et al. (2001) C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, Phys. Rev. Lett. 87, 077902 (2001), URL https://link.aps.org/doi/10.1103/PhysRevLett.87.077902.
  • Bennett et al. (2005) C. H. Bennett, P. Hayden, D. W. Leung, P. W. Shor, and A. Winter, IEEE Transactions on Information Theory 51, 56 (2005), ISSN 1557-9654.
  • (40) This means, the extra qubits sent out by the state preparation devices can be treated as classical noise in this situation.
  • (41) The maximum certified randomness per event is 1.23 bits for both DI and SDI models. This is not a coincidence, since when , the measurement settings of Alice and Bob are in ideal case, and the measurement results of different measurement settings has the same maximum guessing probability–0.4268, and .
  • Li et al. (2012) H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 85, 052308 (2012), URL https://link.aps.org/doi/10.1103/PhysRevA.85.052308.
  • Bennett et al. (1992) C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett. 68, 557 (1992), URL https://link.aps.org/doi/10.1103/PhysRevLett.68.557.