Central limit theorems for stochastic gradient descent with averaging for stable manifolds

12/19/2019 ∙ by Steffen Dereich, et al. ∙ 0

In this article we establish new central limit theorems for Ruppert-Polyak averaged stochastic gradient descent schemes. Compared to previous work we do not assume that convergence occurs to an isolated attractor but instead allow convergence to a stable manifold. On the stable manifold the target function is constant and the oscillations in the tangential direction may be significantly larger than the ones in the normal direction. As we show, one still recovers a central limit theorem with the same rates as in the case of isolated attractors. Here we consider step-sizes γ_n=n^-γ with γ∈(3/4,1), typically.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.