Central Kurdish machine translation: First large scale parallel corpus and experiments

06/17/2021 ∙ by Zhila Amini, et al. ∙ 0

While the computational processing of Kurdish has experienced a relative increase, the machine translation of this language seems to be lacking a considerable body of scientific work. This is in part due to the lack of resources especially curated for this task. In this paper, we present the first large scale parallel corpus of Central Kurdish-English, Awta, containing 229,222 pairs of manually aligned translations. Our corpus is collected from different text genres and domains in an attempt to build more robust and real-world applications of machine translation. We make a portion of this corpus publicly available in order to foster research in this area. Further, we build several neural machine translation models in order to benchmark the task of Kurdish machine translation. Additionally, we perform extensive experimental analysis of results in order to identify the major challenges that Central Kurdish machine translation faces. These challenges include language-dependent and-independent ones as categorized in this paper, the first group of which are aware of Central Kurdish linguistic properties on different morphological, syntactic and semantic levels. Our best performing systems achieve 22.72 and 16.81 in BLEU score for Ku→EN and En→Ku, respectively.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.