Cellular-Connected UAV: Uplink Association, Power Control and Interference Coordination
The line-of-sight (LoS) air-to-ground channel brings both opportunities and challenges in cellular-connected unmanned aerial vehicle (UAV) communications. On one hand, the LoS channels make more cellular base stations (BSs) visible to a UAV as compared to the ground users, which leads to a higher macro-diversity gain for UAV-BS communications. On the other hand, they also render the UAV to impose/suffer more severe uplink/downlink interference to/from the BSs, thus requiring more sophisticated inter-cell interference coordination (ICIC) techniques with more BSs involved. In this paper, we consider the uplink transmission from a UAV to cellular BSs, under spectrum sharing with the existing ground users. To investigate the optimal ICIC design and air-ground performance trade-off, we maximize the weighted sum-rate of the UAV and existing ground users by jointly optimizing the UAV's uplink cell associations and power allocations over multiple resource blocks. However, this problem is non-convex and difficult to be solved optimally. We first propose a centralized ICIC design to obtain a locally optimal solution based on the successive convex approximation (SCA) method. As the centralized ICIC requires global information of the network and substantial information exchange among an excessively large number of BSs, we further propose a decentralized ICIC scheme of significantly lower complexity and signaling overhead for implementation, by dividing the cellular BSs into small-size clusters and exploiting the LoS macro-diversity for exchanging information between the UAV and cluster-head BSs only. Numerical results show that the proposed centralized and decentralized ICIC schemes both achieve a near-optimal performance, and draw important design insights based on practical system setups.
READ FULL TEXT