CCL: Cross-modal Correlation Learning with Multi-grained Fusion by Hierarchical Network

04/07/2017
by   Yuxin Peng, et al.
0

Cross-modal retrieval has become a highlighted research topic for retrieval across multimedia data such as image and text. A two-stage learning framework is widely adopted by most existing methods based on Deep Neural Network (DNN): The first learning stage is to generate separate representation for each modality, and the second learning stage is to get the cross-modal common representation. However, the existing methods have three limitations: (1) In the first learning stage, they only model intra-modality correlation, but ignore inter-modality correlation with rich complementary context. (2) In the second learning stage, they only adopt shallow networks with single-loss regularization, but ignore the intrinsic relevance of intra-modality and inter-modality correlation. (3) Only original instances are considered while the complementary fine-grained clues provided by their patches are ignored. For addressing the above problems, this paper proposes a cross-modal correlation learning (CCL) approach with multi-grained fusion by hierarchical network, and the contributions are as follows: (1) In the first learning stage, CCL exploits multi-level association with joint optimization to preserve the complementary context from intra-modality and inter-modality correlation simultaneously. (2) In the second learning stage, a multi-task learning strategy is designed to adaptively balance the intra-modality semantic category constraints and inter-modality pairwise similarity constraints. (3) CCL adopts multi-grained modeling, which fuses the coarse-grained instances and fine-grained patches to make cross-modal correlation more precise. Comparing with 13 state-of-the-art methods on 6 widely-used cross-modal datasets, the experimental results show our CCL approach achieves the best performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro