Causal Networks: Semantics and Expressiveness

03/27/2013 ∙ by Tom S. Verma, et al. ∙ 0

Dependency knowledge of the form "x is independent of y once z is known" invariably obeys the four graphoid axioms, examples include probabilistic and database dependencies. Often, such knowledge can be represented efficiently with graphical structures such as undirected graphs and directed acyclic graphs (DAGs). In this paper we show that the graphical criterion called d-separation is a sound rule for reading independencies from any DAG based on a causal input list drawn from a graphoid. The rule may be extended to cover DAGs that represent functional dependencies as well as conditional dependencies.



There are no comments yet.


page 1

page 2

page 3

page 4

page 5

page 6

page 7

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.