Causal Meta-Analysis by Integrating Multiple Observational Studies with Multivariate Outcomes

06/29/2023
by   Subharup Guha, et al.
0

Integrating multiple observational studies to make unconfounded causal or descriptive comparisons of group potential outcomes in a large natural population is challenging. Moreover, retrospective cohorts, being convenience samples, are usually unrepresentative of the natural population of interest and have groups with unbalanced covariates. We propose a general covariate-balancing framework based on pseudo-populations that extends established weighting methods to the meta-analysis of multiple retrospective cohorts with multiple groups. Additionally, by maximizing the effective sample sizes of the cohorts, we propose a FLEXible, Optimized, and Realistic (FLEXOR) weighting method appropriate for integrative analyses. We develop new weighted estimators for unconfounded inferences on wide-ranging population-level features and estimands relevant to group comparisons of quantitative, categorical, or multivariate outcomes. The asymptotic properties of these estimators are examined, and accurate small-sample procedures are devised for quantifying estimation uncertainty. Through simulation studies and meta-analyses of TCGA datasets, we discover the differential biomarker patterns of the two major breast cancer subtypes in the United States and demonstrate the versatility and reliability of the proposed weighting strategy, especially for the FLEXOR pseudo-population.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset