CAT: Customized Adversarial Training for Improved Robustness
Adversarial training has become one of the most effective methods for improving robustness of neural networks. However, it often suffers from poor generalization on both clean and perturbed data. In this paper, we propose a new algorithm, named Customized Adversarial Training (CAT), which adaptively customizes the perturbation level and the corresponding label for each training sample in adversarial training. We show that the proposed algorithm achieves better clean and robust accuracy than previous adversarial training methods through extensive experiments.
READ FULL TEXT