CASIA-SURF: A Dataset and Benchmark for Large-scale Multi-modal Face Anti-Spoofing
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (<170) and modalities (≤2), which hinder the further development of the academic community. To facilitate future face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing both in terms of subjects and visual modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities (i.e., RGB, Depth and IR). Associated with this dataset, we also provide concrete measurement set, evaluation protocol and training/validation/testing subsets, developing a new benchmark for face anti-spoofing. Moreover, we present a new multi-modal fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing less useful ones for each modal. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability.
READ FULL TEXT