Case Study of the Proof of Cook's theorem - Interpretation of A(w)
Cook's theorem is commonly expressed such as any polynomial time-verifiable problem can be reduced to the SAT problem. The proof of Cook's theorem consists in constructing a propositional formula A(w) to simulate a computation of TM, and such A(w) is claimed to be CNF to represent a polynomial time-verifiable problem w. In this paper, we investigate A(w) through a very simple example and show that, A(w) has just an appearance of CNF, but not a true logical form. This case study suggests that there exists the begging the question in Cook's theorem.
READ FULL TEXT