Cascading Modular U-Nets for Document Image Binarization

06/25/2020
by   Seokjun Kang, et al.
0

In recent years, U-Net has achieved good results in various image processing tasks. However, conventional U-Nets need to be re-trained for individual tasks with enough amount of images with ground-truth. This requirement makes U-Net not applicable to tasks with small amounts of data. In this paper, we propose to use "modular" U-Nets, each of which is pre-trained to perform an existing image processing task, such as dilation, erosion, and histogram equalization. Then, to accomplish a specific image processing task, such as binarization of historical document images, the modular U-Nets are cascaded with inter-module skip connections and fine-tuned to the target task. We verified the proposed model using the Document Image Binarization Competition (DIBCO) 2017 dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset