Cascaded Framework for Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI

12/29/2020
by   Jun Ma, et al.
0

Automatic evaluation of myocardium and pathology plays an important role in the quantitative analysis of patients suffering from myocardial infarction. In this paper, we present a cascaded convolutional neural network framework for myocardial infarction segmentation and classification in delayed-enhancement cardiac MRI. Specifically, we first use a 2D U-Net to segment the whole heart, including the left ventricle and the myocardium. Then, we crop the whole heart as a region of interest (ROI). Finally, a new 2D U-Net is used to segment the infraction and no-reflow areas in the whole heart ROI. The segmentation method can be applied to the classification task where the segmentation results with the infraction or no-reflow areas are classified as pathological cases. Our method took second place in the MICCAI 2020 EMIDEC segmentation task with Dice scores of 86.28 areas, respectively, and first place in the classification task with an accuracy of 92

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro