Capsule Network Performance on Complex Data
In recent years, convolutional neural networks (CNN) have played an important role in the field of deep learning. Variants of CNN's have proven to be very successful in classification tasks across different domains. However, there are two big drawbacks to CNN's: their failure to take into account of important spatial hierarchies between features, and their lack of rotational invariance. As long as certain key features of an object are present in the test data, CNN's classify the test data as the object, disregarding features' relative spatial orientation to each other. This causes false positives. The lack of rotational invariance in CNN's would cause the network to incorrectly assign the object another label, causing false negatives. To address this concern, Hinton et al. propose a novel type of neural network using the concept of capsules in a recent paper. With the use of dynamic routing and reconstruction regularization, the capsule network model would be both rotation invariant and spatially aware. The capsule network has shown its potential by achieving a state-of-the-art result of 0.25 such as rotation and scaling, better than the previous baseline of 0.39 further test out the application of capsule networks on data with higher dimensionality, we attempt to find the best set of configurations that yield the optimal test error on CIFAR10 dataset.
READ FULL TEXT