Capacity Characterization of UAV-Enabled Two-User Broadcast Channel

01/01/2018 ∙ by Qingqing Wu, et al. ∙ 0

Although prior works have exploited the UAV's mobility to enhance the wireless communication performance under different setups, the fundamental capacity limits of UAV-enabled/aided multiuser communication systems have not yet been characterized. To fill this gap, we consider in this paper a UAV-enabled two-user broadcast channel (BC), where a UAV flying at a constant altitude is deployed to send independent information to two users at different fixed locations on the ground. We aim to characterize the capacity region of this new type of BC over a given UAV flight duration, by jointly optimizing the UAV's trajectory and transmit power/rate allocations over time, subject to the UAV's maximum speed and maximum transmit power constraints. First, to draw essential insights, we consider two special cases with asymptotically large/low UAV flight duration/speed, respectively. For the former case, it is shown that a simple hover-fly-hover (HFH) UAV trajectory with time division multiple access (TDMA) based orthogonal multiuser transmission is capacity-achieving, while in the latter case, the UAV should hover at a fixed location that is nearer to the user with larger achievable rate and in general superposition coding (SC) based non-orthogonal transmission with interference cancellation at the receiver of the nearer user is required. Next, we consider the general case with finite UAV speed and flight duration. We show that the optimal UAV trajectory should follow a general HFH structure, i.e., the UAV successively hovers at a pair of initial and final locations above the line segment of the two users each with a certain amount of time and flies unidirectionally between them at the maximum speed, and SC is generally needed.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.