Canonical Tensor Scaling

09/02/2020 ∙ by Tung D. Nguyen, et al. ∙ 0

In this paper we generalize the canonical positive scaling of rows and columns of a matrix to the scaling of selected-rank subtensors of an arbitrary tensor. We expect our results and framework will prove useful for sparse-tensor completion required for generalizations of the recommender system problem beyond a matrix of user-product ratings to multidimensional arrays involving coordinates based both on user attributes (e.g., age, gender, geographical location, etc.) and product/item attributes (e.g., price, size, weight, etc.).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.