CAN-PINN: A Fast Physics-Informed Neural Network Based on Coupled-Automatic-Numerical Differentiation Method

10/29/2021
by   Pao-Hsiung Chiu, et al.
39

In this study, novel physics-informed neural network (PINN) methods for coupling neighboring support points and their derivative terms which are obtained by automatic differentiation (AD), are proposed to allow efficient training with improved accuracy. The computation of differential operators required for PINNs loss evaluation at collocation points are conventionally obtained via AD. Although AD has the advantage of being able to compute the exact gradients at any point, such PINNs can only achieve high accuracies with large numbers of collocation points, otherwise they are prone to optimizing towards unphysical solution. To make PINN training fast, the dual ideas of using numerical differentiation (ND)-inspired method and coupling it with AD are employed to define the loss function. The ND-based formulation for training loss can strongly link neighboring collocation points to enable efficient training in sparse sample regimes, but its accuracy is restricted by the interpolation scheme. The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs, while further improving accuracy by up to 1-2 orders of magnitude relative to ND-based PINNs. For a proof-of-concept demonstration of this can-scheme to fluid dynamic problems, two numerical-inspired instantiations of can-PINN schemes for the convection and pressure gradient terms were derived to solve the incompressible Navier-Stokes (N-S) equations. The superior performance of can-PINNs is demonstrated on several challenging problems, including the flow mixing phenomena, lid driven flow in a cavity, and channel flow over a backward facing step. The results reveal that for challenging problems like these, can-PINNs can consistently achieve very good accuracy whereas conventional AD-based PINNs fail.

READ FULL TEXT

page 12

page 14

page 18

page 19

page 20

research
03/08/2023

Flow reconstruction by multiresolution optimization of a discrete loss with automatic differentiation

We present a potent computational method for the solution of inverse pro...
research
01/30/2023

Temporal Consistency Loss for Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) have been widely used to solve ...
research
06/02/2023

Adaptive physics-informed neural networks for dynamic thermo-mechanical coupling problems in large-size-ratio functionally graded materials

In this paper, we present the adaptive physics-informed neural networks ...
research
09/26/2020

Aerostructural Wing Shape Optimization assisted by Algorithmic Differentiation

With more efficient structures, last trends in aeronautics have witnesse...
research
05/19/2022

Accelerated Training of Physics Informed Neural Networks (PINNs) using Meshless Discretizations

We present a new technique for the accelerated training of physics-infor...
research
07/14/2022

On the use of graph neural networks and shape-function-based gradient computation in the deep energy method

A graph neural network (GCN) is employed in the deep energy method (DEM)...

Please sign up or login with your details

Forgot password? Click here to reset