Calculation of Entailed Rank Constraints in Partially Non-Linear and Cyclic Models

09/17/2013
by   Peter L. Spirtes, et al.
0

The Trek Separation Theorem (Sullivant et al. 2010) states necessary and sufficient conditions for a linear directed acyclic graphical model to entail for all possible values of its linear coefficients that the rank of various sub-matrices of the covariance matrix is less than or equal to n, for any given n. In this paper, I extend the Trek Separation Theorem in two ways: I prove that the same necessary and sufficient conditions apply even when the generating model is partially non-linear and contains some cycles. This justifies application of constraint-based causal search algorithms such as the BuildPureClusters algorithm (Silva et al. 2006) for discovering the causal structure of latent variable models to data generated by a wider class of causal models that may contain non-linear and cyclic relations among the latent variables.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro