Cache-Aided K-User Broadcast Channels with State Information at Receivers
We study a K-user coded-caching broadcast problem in a joint source-channel coding framework. The transmitter observes a database of files that are being generated at a certain rate per channel use, and each user has a cache, which can store a fixed fraction of the generated symbols. In the delivery phase, the transmitter broadcasts a message so that the users can decode their desired files using the received signal and their cache content. The communication between the transmitter and the receivers happens over a (deterministic) time-varying erasure broadcast channel, and the channel state information is only available to the users. We characterize the maximum achievable source rate for the 2-user and the degraded K-user problems. We provide an upper bound for any caching strategy's achievable source rates. Finally, we present a linear programming formulation to show that the upper bound is not a sharp characterization. Closing the gap between the achievable rate and the optimum rate remains open.
READ FULL TEXT