C-for-Metal: High Performance SIMD Programming on Intel GPUs

01/26/2021 ∙ by Guei-Yuan Lueh, et al. ∙ 0

The SIMT execution model is commonly used for general GPU development. CUDA and OpenCL developers write scalar code that is implicitly parallelized by compiler and hardware. On Intel GPUs, however, this abstraction has profound performance implications as the underlying ISA is SIMD and important hardware capabilities cannot be fully utilized. To close this performance gap we introduce C-For-Metal (CM), an explicit SIMD programming framework designed to deliver close-to-the-metal performance on Intel GPUs. The CM programming language and its vector/matrix types provide an intuitive interface to exploit the underlying hardware features, allowing fine-grained register management, SIMD size control and cross-lane data sharing. Experimental results show that CM applications from different domains outperform the best-known SIMT-based OpenCL implementations, achieving up to 2.7x speedup on the latest Intel GPU.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.