BUT-FIT at SemEval-2020 Task 4: Multilingual commonsense

by   Josef Jon, et al.

This paper describes work of the BUT-FIT's team at SemEval 2020 Task 4 - Commonsense Validation and Explanation. We participated in all three subtasks. In subtasks A and B, our submissions are based on pretrained language representation models (namely ALBERT) and data augmentation. We experimented with solving the task for another language, Czech, by means of multilingual models and machine translated dataset, or translated model inputs. We show that with a strong machine translation system, our system can be used in another language with a small accuracy loss. In subtask C, our submission, which is based on pretrained sequence-to-sequence model (BART), ranked 1st in BLEU score ranking, however, we show that the correlation between BLEU and human evaluation, in which our submission ended up 4th, is low. We analyse the metrics used in the evaluation and we propose an additional score based on model from subtask B, which correlates well with our manual ranking, as well as reranking method based on the same principle. We performed an error and dataset analysis for all subtasks and we present our findings.



There are no comments yet.


page 1

page 2

page 3

page 4


QiaoNing at SemEval-2020 Task 4: Commonsense Validation and Explanation system based on ensemble of language model

In this paper, we present language model system submitted to SemEval-202...

Automatic Standardization of Colloquial Persian

The Iranian Persian language has two varieties: standard and colloquial....

Multilingual Translation with Extensible Multilingual Pretraining and Finetuning

Recent work demonstrates the potential of multilingual pretraining of cr...

HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity

This paper describes our system designed for SemEval-2022 Task 8: Multil...

KaLM at SemEval-2020 Task 4: Knowledge-aware Language Models for Comprehension And Generation

This paper presents our strategies in SemEval 2020 Task 4: Commonsense V...

Data Processing Matters: SRPH-Konvergen AI's Machine Translation System for WMT'21

In this paper, we describe the submission of the joint Samsung Research ...

CUHK at SemEval-2020 Task 4: CommonSense Explanation, Reasoning and Prediction with Multi-task Learning

This paper describes our system submitted to task 4 of SemEval 2020: Com...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.