Bulk-surface Lie splitting for parabolic problems with dynamic boundary conditions
This paper studies bulk-surface splitting methods of first order for (semi-linear) parabolic partial differential equations with dynamic boundary conditions. The proposed Lie splitting scheme is based on a reformulation of the problem as a coupled partial differential-algebraic equation system, i.e., the boundary conditions are considered as a second dynamic equation which is coupled to the bulk problem. The splitting approach is combined with bulk-surface finite elements and an implicit Euler discretization of the two subsystems. We prove first-order convergence of the resulting fully discrete scheme in the presence of a weak CFL condition of the form τ≤ c h for some constant c>0. The convergence is also illustrated numerically using dynamic boundary conditions of Allen-Cahn-type.
READ FULL TEXT