Building K-Anonymous User Cohorts with Consecutive Consistent Weighted Sampling (CCWS)

04/26/2023
by   Xinyi Zheng, et al.
0

To retrieve personalized campaigns and creatives while protecting user privacy, digital advertising is shifting from member-based identity to cohort-based identity. Under such identity regime, an accurate and efficient cohort building algorithm is desired to group users with similar characteristics. In this paper, we propose a scalable K-anonymous cohort building algorithm called consecutive consistent weighted sampling (CCWS). The proposed method combines the spirit of the (p-powered) consistent weighted sampling and hierarchical clustering, so that the K-anonymity is ensured by enforcing a lower bound on the size of cohorts. Evaluations on a LinkedIn dataset consisting of >70M users and ads campaigns demonstrate that CCWS achieves substantial improvements over several hashing-based methods including sign random projections (SignRP), minwise hashing (MinHash), as well as the vanilla CWS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset