Building a PubMed knowledge graph

05/08/2020 ∙ by Jian Xu, et al. ∙ 0

PubMed is an essential resource for the medical domain, but useful concepts are either difficult to extract or are ambiguated, which has significantly hindered knowledge discovery. To address this issue, we constructed a PubMed knowledge graph (PKG) by extracting bio-entities from 29 million PubMed abstracts, disambiguating author names, integrating funding data through the National Institutes of Health (NIH) ExPORTER, collecting affiliation history and educational background of authors from ORCID, and identifying fine-grained affiliation data from MapAffil. Through the integration of the credible multi-source data, we could create connections among the bio-entities, authors, articles, affiliations, and funding. Data validation revealed that the BioBERT deep learning method of bio-entity extraction significantly outperformed the state-of-the-art models based on the F1 score (by 0.51 disambiguation (AND) achieving a F1 score of 98.09 innovations, not only enabling us to measure scholarly impact, knowledge usage, and knowledge transfer, but also assisting us in profiling authors and organizations based on their connections with bio-entities. The PKG is freely available on Figshare (https://figshare.com/s/6327a55355fc2c99f3a2, simplified version that exclude PubMed raw data) and TACC website (http://er.tacc.utexas.edu/datasets/ped, full version).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 16

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.