Budgeted and Non-budgeted Causal Bandits

12/13/2020 ∙ by Vineet Nair, et al. ∙ 0

Learning good interventions in a causal graph can be modelled as a stochastic multi-armed bandit problem with side-information. First, we study this problem when interventions are more expensive than observations and a budget is specified. If there are no backdoor paths from an intervenable node to the reward node then we propose an algorithm to minimize simple regret that optimally trades-off observations and interventions based on the cost of intervention. We also propose an algorithm that accounts for the cost of interventions, utilizes causal side-information, and minimizes the expected cumulative regret without exceeding the budget. Our cumulative-regret minimization algorithm performs better than standard algorithms that do not take side-information into account. Finally, we study the problem of learning best interventions without budget constraint in general graphs and give an algorithm that achieves constant expected cumulative regret in terms of the instance parameters when the parent distribution of the reward variable for each intervention is known. Our results are experimentally validated and compared to the best-known bounds in the current literature.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.