Budget Sharing for Multi-Analyst Differential Privacy

11/02/2020 ∙ by David Pujol, et al. ∙ 0

Large organizations that collect data about populations (like the US Census Bureau) release summary statistics that are used by multiple stakeholders for resource allocation and policy making problems. These organizations are also legally required to protect the privacy of individuals from whom they collect data. Differential Privacy (DP) provides a solution to release useful summary data while preserving privacy. However, most DP mechanisms are designed to answer a single set of queries and optimize the total accuracy. In reality, there are often multiple stakeholders that use a given data release and have overlapping but not-identical queries. This introduces a novel joint optimization problem in DP where the privacy budget must be shared among different analysts. In this work, we initiate study into the problem of DP query answering across multiple analysts. To capture the competing goals and priorities of multiple analysts, we formulate three desiderata that any mechanism should satisfy in this setting – The Sharing Incentive, Non-Interference, and Workload Adaptivity – while still optimizing for overall error. We demonstrate how existing DP query answering mechanisms in the multi-analyst settings fail to satisfy at least one of the desiderata. We present novel DP algorithms that provably satisfy all our desiderata and empirically show that they incur low error on realistic tasks.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.