BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption

by   Sangpyo Kim, et al.

Homomorphic encryption (HE) enables the secure offloading of computations to the cloud by providing computation on encrypted data (ciphertexts). HE is based on noisy encryption schemes in which noise accumulates as more computations are applied to the data. The limited number of operations applicable to the data prevents practical applications from exploiting HE. Bootstrapping enables an unlimited number of operations or fully HE (FHE) by refreshing the ciphertext. Unfortunately, bootstrapping requires a significant amount of additional computation and memory bandwidth as well. Prior works have proposed hardware accelerators for computation primitives of FHE. However, to the best of our knowledge, this is the first to propose a hardware FHE accelerator that supports bootstrapping as a first-class citizen. In particular, we propose BTS - Bootstrappable, Technologydriven, Secure accelerator architecture for FHE. We identify the challenges of supporting bootstrapping in the accelerator and analyze the off-chip memory bandwidth and computation required. In particular, given the limitations of modern memory technology, we identify the HE parameter sets that are efficient for FHE acceleration. Based on the insights gained from our analysis, we propose BTS, which effectively exploits the parallelism innate in HE operations by arranging a massive number of processing elements in a grid. We present the design and microarchitecture of BTS, including a network-on-chip design that exploits a deterministic communication pattern. BTS shows 5,556x and 1,306x improved execution time on ResNet-20 and logistic regression over a CPU, with a chip area of 373.6mm^2 and up to 163.2W of power.


page 1

page 7

page 11


FAB: An FPGA-based Accelerator for Bootstrappable Fully Homomorphic Encryption

FHE offers protection to private data on third-party cloud servers by al...

ARK: Fully Homomorphic Encryption Accelerator with Runtime Data Generation and Inter-Operation Key Reuse

Homomorphic Encryption (HE) is one of the most promising post-quantum cr...

TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Computation

Secure computation is of critical importance to not only the DoD, but ac...

CryptoLight: An Electro-Optical Accelerator for Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) protects data privacy in cloud comput...

BASALISC: Programmable Asynchronous Hardware Accelerator for BGV Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) allows for secure computation on encr...

REED: Chiplet-Based Scalable Hardware Accelerator for Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) has emerged as a promising technology...

CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution

The migration of computation to the cloud has raised privacy concerns as...

Please sign up or login with your details

Forgot password? Click here to reset