Bridging the Knowledge Gap: Enhancing Question Answering with World and Domain Knowledge

10/16/2019
by   Travis R. Goodwin, et al.
0

In this paper we present OSCAR (Ontology-based Semantic Composition Augmented Regularization), a method for injecting task-agnostic knowledge from an Ontology or knowledge graph into a neural network during pretraining. We evaluated the impact of including OSCAR when pretraining BERT with Wikipedia articles by measuring the performance when fine-tuning on two question answering tasks involving world knowledge and causal reasoning and one requiring domain (healthcare) knowledge and obtained 33:3 improved accuracy compared to pretraining BERT without OSCAR and obtaining new state-of-the-art results on two of the tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro