BRAINSTORMING: Consensus Learning in Practice

10/06/2009
by   Dariusz Plewczynski, et al.
0

We present here an introduction to Brainstorming approach, that was recently proposed as a consensus meta-learning technique, and used in several practical applications in bioinformatics and chemoinformatics. The consensus learning denotes heterogeneous theoretical classification method, where one trains an ensemble of machine learning algorithms using different types of input training data representations. In the second step all solutions are gathered and the consensus is build between them. Therefore no early solution, given even by a generally low performing algorithm, is not discarder until the late phase of prediction, when the final conclusion is drawn by comparing different machine learning models. This final phase, i.e. consensus learning, is trying to balance the generality of solution and the overall performance of trained model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro