Bounds in the Lee Metric and Optimal Codes
In this paper we investigate known Singleton-like bounds in the Lee metric and characterize optimal codes, which turn out to be very few. We then focus on Plotkin-like bounds in the Lee metric and present a new bound that extends and refines a previously known, and out-performs it in the case of non-free codes. We then compute the density of optimal codes with regard to the new bound. Finally we fill a gap in the characterization of Lee-equidistant codes.
READ FULL TEXT