Bounds for the Number of Tests in Non-Adaptive Randomized Algorithms for Group Testing

11/05/2019
by   Nader H. Bshouty, et al.
0

We study the group testing problem with non-adaptive randomized algorithms. Several models have been discussed in the literature to determine how to randomly choose the tests. For a model M, let m_ M(n,d) be the minimum number of tests required to detect at most d defectives within n items, with success probability at least 1-δ, for some constant δ. In this paper, we study the measures c_ M(d)=lim_n→∞m_ M(n,d)/ln n c_ M=lim_d→∞c_ M(d)/d. In the literature, the analyses of such models only give upper bounds for c_ M(d) and c_ M, and for some of them, the bounds are not tight. We give new analyses that yield tight bounds for c_ M(d) and c_ M for all the known models M.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro