Bounding the number of edges of matchstick graphs

08/17/2021
by   Jérémy Lavollée, et al.
0

We show that a matchstick graph with n vertices has no more than 3n-c√(n-1/4) edges, where c=1/2(√(12) + √(2π√(3))). The main tools in the proof are the Euler formula, the isoperimetric inequality, and an upper bound for the number of edges in terms of n and the number of non-triangular faces. We also find a sharp upper bound for the number of triangular faces in a matchstick graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro