Bounded Regret for Finitely Parameterized Multi-Armed Bandits

03/03/2020
by   Kishan Panaganti, et al.
0

We consider the problem of finitely parameterized multi-armed bandits where the model of the underlying stochastic environment can be characterized based on a common unknown parameter. The true parameter is unknown to the learning agent. However, the set of possible parameters, which is finite, is known a priori. We propose an algorithm that is simple and easy to implement, which we call FP-UCB algorithm, which uses the information about the underlying parameter set for faster learning. In particular, we show that the FP-UCB algorithm achieves a bounded regret under some structural condition on the underlying parameter set. We also show that, if the underlying parameter set does not satisfy the necessary structural condition, FP-UCB algorithm achieves a logarithmic regret, but with a smaller preceding constant compared to the standard UCB algorithm. We also validate the superior performance of the FP-UCB algorithm through extensive numerical simulations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset