Boundary-based Image Forgery Detection by Fast Shallow CNN
Image forgery detection is the task of detecting and localizing forged parts in tampered images. Previous works mostly focus on high resolution images using traces of resampling features, demosaicing features or sharpness of edges. However, a good detection method should also be applicable to low resolution images because compressed or resized images are common these days. To this end, we propose a Shallow Convolutional Neural Network(SCNN), capable of distinguishing the boundaries of forged regions from original edges in low resolution images. SCNN is designed to utilize the information of chroma and saturation. Based on SCNN, two approaches that are named Sliding Windows Detection (SWD) and Fast SCNN, respectively, are developed to detect and localize image forgery region. In this paper, we substantiate that Fast SCNN can detect drastic change of chroma and saturation. In image forgery detection experiments Our model is evaluated on the CASIA 2.0 dataset. The results show that Fast SCNN performs well on low resolution images and achieves significant improvements over the state-of-the-art.
READ FULL TEXT