Bound states of a quartic and sextic inverse-powerlaw potential for all angular momenta

03/03/2021
by   A. D. Alhaidari, et al.
0

We use the tridiagonal representation approach to solve the radial Schrödinger equation for an inverse power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro