Borders, Palindrome Prefixes, and Square Prefixes

06/09/2019
by   Daniel Gabric, et al.
0

We show that the number of length-n words over a k-letter alphabet having no even palindromic prefix is the same as the number of length-n unbordered words, by constructing an explicit bijection between the two sets. A similar result holds for those words having no odd palindromic prefix, again by constructing a certain bijection. Using known results on borders, it follows that the number of length-n words having no even (resp., odd) palindromic prefix is asymptotically γ_k · k^n for some positive constant γ_k. We obtain an analogous result for words having no nontrivial palindromic prefix. Finally, we obtain similar results for words having no square prefix, thus proving a 2013 conjecture of Chaffin, Linderman, Sloane, and Wilks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro