Boosting Self-Supervised Learning via Knowledge Transfer

05/01/2018 ∙ by Mehdi Noroozi, et al. ∙ 0

In self-supervised learning, one trains a model to solve a so-called pretext task on a dataset without the need for human annotation. The main objective, however, is to transfer this model to a target domain and task. Currently, the most effective transfer strategy is fine-tuning, which restricts one to use the same model or parts thereof for both pretext and target tasks. In this paper, we present a novel framework for self-supervised learning that overcomes limitations in designing and comparing different tasks, models, and data domains. In particular, our framework decouples the structure of the self-supervised model from the final task-specific fine-tuned model. This allows us to: 1) quantitatively assess previously incompatible models including handcrafted features; 2) show that deeper neural network models can learn better representations from the same pretext task; 3) transfer knowledge learned with a deep model to a shallower one and thus boost its learning. We use this framework to design a novel self-supervised task, which achieves state-of-the-art performance on the common benchmarks in PASCAL VOC 2007, ILSVRC12 and Places by a significant margin. Our learned features shrink the mAP gap between models trained via self-supervised learning and supervised learning from 5.9

READ FULL TEXT

Authors

page 3

page 4

page 8

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.