Boosting Optical Character Recognition: A Super-Resolution Approach

06/07/2015
by   Chao Dong, et al.
0

Text image super-resolution is a challenging yet open research problem in the computer vision community. In particular, low-resolution images hamper the performance of typical optical character recognition (OCR) systems. In this article, we summarize our entry to the ICDAR2015 Competition on Text Image Super-Resolution. Experiments are based on the provided ICDAR2015 TextSR dataset and the released Tesseract-OCR 3.02 system. We report that our winning entry of text image super-resolution framework has largely improved the OCR performance with low-resolution images used as input, reaching an OCR accuracy score of 77.19 high-resolution images 78.80

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset