Boosting Factual Correctness of Abstractive Summarization with Knowledge Graph
A commonly observed problem with abstractive summarization is the distortion or fabrication of factual information in the article. This inconsistency between summary and original text has led to various concerns over its applicability. In this paper, we propose to boost factual correctness of summaries via the fusion of knowledge, i.e. extracted factual relations from the article. We present a Fact-Aware Summarization model, FASum. In this model, the knowledge information can be organically integrated into the summary generation process via neural graph computation and effectively improves the factual correctness. Empirical results show that FASum generates summaries with significantly higher factual correctness compared with state-of-the-art abstractive summarization systems, both under an independently trained factual correctness evaluator and human evaluation. For example, in CNN/DailyMail dataset, FASum obtains 1.2 higher than BottomUp.
READ FULL TEXT