Book embeddings of Reeb graphs

12/05/2013
by   Vitaliy Kurlin, et al.
0

Let X be a simplicial complex with a piecewise linear function f:X→R. The Reeb graph Reeb(f,X) is the quotient of X, where we collapse each connected component of f^-1(t) to a single point. Let the nodes of Reeb(f,X) be all homologically critical points where any homology of the corresponding component of the level set f^-1(t) changes. Then we can label every arc of Reeb(f,X) with the Betti numbers (β_1,β_2,...,β_d) of the corresponding d-dimensional component of a level set. The homology labels give more information about the original complex X than the classical Reeb graph. We describe a canonical embedding of a Reeb graph into a multi-page book (a star cross a line) and give a unique linear code of this book embedding.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro