Block Full Rank Linearizations of Rational Matrices

11/02/2020
by   Froilán M. Dopico, et al.
0

Block full rank pencils introduced in [Dopico et al., Local linearizations of rational matrices with application to rational approximations of nonlinear eigenvalue problems, Linear Algebra Appl., 2020] allow us to obtain local information about zeros that are not poles of rational matrices. In this paper we extend the structure of those block full rank pencils to construct linearizations of rational matrices that allow us to recover locally not only information about zeros but also about poles, whenever certain minimality conditions are satisfied. In addition, the notion of degree of a rational matrix will be used to determine the grade of the new block full rank linearizations as linearizations at infinity. This new family of linearizations is important as it generalizes and includes the structures appearing in most of the linearizations for rational matrices constructed in the literature. In particular, this theory will be applied to study the structure and the properties of the linearizations in [P. Lietaert et al., Automatic rational approximation and linearization of nonlinear eigenvalue problems, submitted].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset