Blind Super-resolution of Point Sources via Projected Gradient Descent
Blind super-resolution can be cast as a low rank matrix recovery problem by exploiting the inherent simplicity of the signal and the low dimensional structure of point spread functions. In this paper, we develop a simple yet efficient non-convex projected gradient descent method for this problem based on the low rank structure of the vectorized Hankel matrix associated with the target matrix. Theoretical analysis indicates that the proposed method exactly converges to the target matrix with a linear convergence rate under the similar conditions as convex approaches. Numerical results show that our approach is competitive with existing convex approaches in terms of recovery ability and efficiency.
READ FULL TEXT