Blaschke and Separation Theorems for Orthogonally Convex Sets
In this paper, we deal with analytic and geometric properties of orthogonally convex sets. We establish a Blaschke-type theorem for path-connected and orthogonally convex sets in the plane using orthogonally convex paths. The separation of these sets is established using suitable grids. Consequently, a closed and orthogonally convex set is represented by the intersection of staircase-halfplanes in the plane. Some topological properties of orthogonally convex sets in dimensional spaces are also given.
READ FULL TEXT