Bipartite Graph Reasoning GANs for Person Pose and Facial Image Synthesis

11/12/2022
by   Hao Tang, et al.
0

We present a novel bipartite graph reasoning Generative Adversarial Network (BiGraphGAN) for two challenging tasks: person pose and facial image synthesis. The proposed graph generator consists of two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respectively. Specifically, the proposed bipartite graph reasoning (BGR) block aims to reason the long-range cross relations between the source and target pose in a bipartite graph, which mitigates some of the challenges caused by pose deformation. Moreover, we propose a new interaction-and-aggregation (IA) block to effectively update and enhance the feature representation capability of both a person's shape and appearance in an interactive way. To further capture the change in pose of each part more precisely, we propose a novel part-aware bipartite graph reasoning (PBGR) block to decompose the task of reasoning the global structure transformation with a bipartite graph into learning different local transformations for different semantic body/face parts. Experiments on two challenging generation tasks with three public datasets demonstrate the effectiveness of the proposed methods in terms of objective quantitative scores and subjective visual realness. The source code and trained models are available at https://github.com/Ha0Tang/BiGraphGAN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset